首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   11篇
  2023年   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   4篇
  2013年   14篇
  2012年   7篇
  2011年   13篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   13篇
  2005年   10篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   3篇
  1979年   1篇
排序方式: 共有174条查询结果,搜索用时 16 毫秒
51.
52.
The type 2 diabetes is increasing rapidly around the globe. The primary cause for this is insulin resistance due to the disruption of the insulin signal transduction mechanism. Insulin signal transduction stimulates glucose transport through the glucose transporter GLUT4, by promoting the exocytosis process. Understanding the structural topology of GLUT4 mechanism will increase our understanding of the dynamic activities about glucose transport and its regulation in the membrane environment. However, little is known about the topology of GLUT4. In this article, we have determined the amino acid composition, disulfide topology, structure conformation pattern of GLUT4. The amino acid composition portrays that leucine composition is the highest contributing to 15.5 % among all other amino acids. Three cysteine residues such as Cys223, Cys361, and Cys363 were observed and the last two were associated with one disulfide bond formation. We have generated surface cavities to know the clefts/pockets on the surface of this protein that showed few irregular cavities placed mostly in the transmembrane-helical part. Besides, topology mapping of 12 transmembrane-helixes was done to predict N- and O-glycosylation sites and to show the highly glycosylated GLUT4 that includes both N- and O-glycosylation sites. Furthermore, hydrophobic segment and molecular charge distribution were analyzed. This article shows that bioinformatics tools can provide a rapid methodology to predict the topology of GLUT4. It also provides insights into the structural details and structural functioning relationships in the human GLUT4. The results can be of great help to advance future drug development research using GLUT4 as a target protein.  相似文献   
53.
To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.  相似文献   
54.
Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number.  相似文献   
55.
Insulin receptor substrate (IRS) harbors proteins such as IRS1, IRS2, IRS3, IRS4, IRS5 and IRS6. These key proteins act as vital downstream regulators in the insulin signaling pathway. However, little is known about the evolutionary relationship among the IRS family members. This study explores the potential to depict the evolutionary relationship among the IRS family using bioinformatics, algorithm analysis and mathematical models.  相似文献   
56.
Foveal hypoplasia and optic nerve misrouting are developmental defects of the visual pathway and only co-occur in connection with albinism; to date, they have only been associated with defects in the melanin-biosynthesis pathway. Here, we report that these defects can occur independently of albinism in people with recessive mutations in the putative glutamine transporter gene SLC38A8. Nine different mutations were identified in seven Asian and European families. Using morpholino-mediated ablation of Slc38a8 in medaka fish, we confirmed that pigmentation is unaffected by loss of SLC38A8. Furthermore, by undertaking an association study with SNPs at the SLC38A8 locus, we showed that common variants within this gene modestly affect foveal thickness in the general population. This study reveals a melanin-independent component underpinning the development of the visual pathway that requires a functional role for SLC38A8.  相似文献   
57.
58.
This context was investigated to assess the in vitro antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme (ACE) inhibition traits of Punica granatum fruits peel extract. Initially, among various extracts tested, aqueous and ethanolic peel extracts depicted the presence of diverse phytoconstituents. In vitro antioxidative properties of peel extracts were determined using standard methodologies. Results showed that aqueous and ethanolic extracts had IC50 values of 471.7 and 509.16 μg/mL, respectively in terms of 1,1,diphenyl 2,2,picrylhydrazyl scavenging. Likewise, IC50 values of aqueous and ethanol extract were obtained as 488.76 and 478.47 μg/mL towards the degradation of hydrogen peroxide. The ethanolic extract exhibited the highest inhibition of α-glucosidase by showing activity of 53.34 ± 2.0 to 15.18 ± 1.4 U/L in a dose dependent manner (100–1000 µg/mL). Ethanolic extract was reported as the most active inhibitor of lipase with an IC50 value of 603.50 µg/mL. Ethanolic extract showed increased inhibition of ACE in a concentration dependent manner (100–1000 µg/mL) with IC50 value of 519.45 µg/mL. Fourier transform-infrared spectrum revealed the availability of various functional groups in the ethanolic extract of peel. Gas chromatography-mass spectrometry chromatogram of peel extract illustrated 23 diversified chemical constituents including 1,2,3,4-butanetetrol, Dimethyl sulfone, 9-octadecenamide, and Pentadecanoic acid as predominant compounds. In summary, P. granatum fruits peel extract revealed promising antioxidant, anti-diabetic, anti-obesity, and anti-hypertensive properties.  相似文献   
59.
Nostoc ellipsosporum is a highly potent cyanobacterium for production of pharmaceutically important chemicals. In this study, an effort has been made to determine the effect of glucose and phytohaemagglutinin (PHA) rich Phaseolus vulgaris extract on N. ellipsosporum growth and protein production. Maximum growth was observed in Fog’s medium supplemented with glucose. SEM analysis showed that the regular and well developed heterocysts were observed in Fog’s media supplemented with glucose. Significant medium components were evaluated by Plackett–Burman (PB) design and PHA extract was found to be the most significant in growth medium. Results of this study showed that both glucose and PHA rich P. vulgaris extract have positive effects and enhance the growth and protein synthesis.  相似文献   
60.
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-β (TGF-β) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-β-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号